Division/Department: Engineering for Professionals (EP)
HUDL Ambassador: Sara Shunkwiler
Faculty Name:
AI for Assured Autonomy: Cecil Bowe
Computational Methods of Analysis: Christopher Stiles
References:
Ainsworth, S. E. (2021). The multiple representations principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (3rd ed., pp. 158-170). Cambridge University Press. https://doi.org/10.1017/9781108894333.016
Gilbert, J. K., & Treagust, D. F. (2009). Introduction: macro, submicro and symbolic representations and the relationship between them, key models in chemical education. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education. Springer.
Grout, I. (2022). Considering universal design principles and guidelines in a laboratory based module providing an introduction to microcontroller based embedded sensor systems design. 31st Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE), 1-6. https://doi.org/10.1109/EAEEIE54893.2022.9820562
Mayer, R. E. (2021). Cognitive theory of multimedia learning. In R. E. Mayer & L. Fiorella, Cambridge handbook of multimedia learning (3rd ed., pp. 57-72). Cambridge University Press. https://doi.org/10.1017/9781108894333.008
Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science education: Why should we use them? In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.) Multiple representations in physics education: Models and modeling in science education (Vol. 10). Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5
Schnotz, W. (2021). Integrated model of text and picture comprehension. In R. E. Mayer, Cambridge handbook of multimedia learning (3rd ed., pp. 82-99). Cambridge University Press. https://doi.org/10.1017/9781108894333.010